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AFIT/GCA/ENV/10-M03 

Abstract 

 

 In the current fiscally constrained environment, the Air Force must allocate 

resources where they are most needed and will be most effectively used.  For aircraft, this 

means spending money on weapon systems in a manner that optimizes aircraft 

availability rates, thereby maximizing the warfighting capability of the Air Force.  With 

that in mind, this thesis endeavors to improve the analytical capability of the Air Force by 

demonstrating a definitive link between operations and maintenance (O&M) spending 

and aircraft availability rates.  In order to do that, explanatory regression models are 

developed that show the relationship between O&M spending and AA rates, while 

controlling for as many other significant variables as the data allow.  Ultimately, this 

research was unable to show that aircraft availability rates are significantly influenced by 

changes in O&M spending; however, suggestions for future research and potential policy 

implications are discussed. 
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OPTIMIZING AIRCRAFT AVAILABILITY:  WHERE TO SPEND YOUR NEXT 

O&M DOLLAR 

 

I:  Introduction 

 

Background 

 In his leadership message, the Assistant Secretary of the Air Force for Financial 

Management and Comptroller, Dr. Jamie M. Morin stated,  

in this time of scarce resources … every dollar wasted or inefficiently expended is 
an additional debt passed on to our children.  … we are all charged with 
balancing the imperative of effectively using resources to accomplish vital 
national goals with the need to continuously … provide the capabilities needed in 
the wars we are fighting today, and prepare for the uncertain conflicts of the 
future (2009). 

 
Regardless of the dollar value of the bottom line Air Force budget, Air Force decision 

makers should expend resources in the most effective manner possible.  That is, use 

resources where they will have the most positive effect on the mission.   

 The mission of the United States Air Force is to “fly fight and win … in air, space 

and cyberspace” (Donley and Schwartz, 2009:3).  While the Air Force employs many 

assets to achieve this mission, the most obvious and direct tools used are aircraft.  

Whether the mission is close air support, airlift, aerial refueling, or reconnaissance, the 

availability of necessary aircraft to perform the mission is a vital concern.  Accordingly, 

the Air Force spends a significant portion of its budget each year to sustain its aircraft.  In 

fiscal year (FY) 2009, the Air Force spent $42.1 billion on operations and maintenance 

(O&M) to support its people and equipment.  Of those O&M expenditures, the money 
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spent directly on flying operations totaled $14.7 billion, which amounts to 12.9% of the 

baseline budget (SAF/FMB, 2009).  

 Although the Air Force allocates a nontrivial portion of its budget to support its 

aircraft, aircraft availability (AA) rates rise and fall with regularity.  Figure 1 shows the 

availability rates of aircraft by mission type from FY1999 to FY2009.  As we can plainly 

see, AA rates fluctuate drastically for each of the weapon system types shown from year 

to year.  Although it would be helpful to compare the historical AA rates to the goals set 

for each weapon system over the same period, the Air Force did not begin establishing 

AA standards until 2008.  Prior to that, the Air Force focused most of its attention on 

mission capable (MC) rates and the major commands (MAJCOMs) were primarily 

responsible for setting their own goals (Tyler, 2009). 

 

Figure 1:  Aircraft Availability Rates, FY99 - FY09 (Tirpak, 2009) 

 With that said, Air Force leaders should have a better understanding of the factors 

that influence AA rates so that they are able to affect positive change.  Without an 

adequate number or the right combination of available aircraft, the Air Force may not be 
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able to accomplish its mission.  In our study, we build on previous research to gain a 

better understanding of the factors that affect AA rates.  Specifically, we show the affect 

that O&M costs have on AA rates, which will allow Air Force leaders to use O&M 

resources as a means to control the AA rates of the Air Force fleet. 

 

Purpose of This Study 

 In this study, we seek to determine which factors significantly affect aircraft 

availability rates; O&M costs will be our primary independent variable of interest.  In 

order to do that, we develop explanatory multiple regression models that show 

relationships between O&M costs and AA rates, while controlling for as many other 

significant variables as our data allow.  We use these findings to improve the analytical 

capability of the Air Force when trying to determine how to allocate resources so that 

O&M funding may be used as a tool to optimize aircraft availability. 

 

Research Objective 

 The objective of this research is to develop explanatory models that demonstrate a 

definitive link between O&M costs and aircraft availability. 

 Research Questions. 

1. What variables are significant predictors of aircraft availability rates?  

2. Are aircraft availability rates influenced by changes in O&M spending?   

3. Do the aircraft availability rates of some weapon systems respond to changes 

in O&M costs more than others? 
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4. Can a single model be developed to represent multiple Mission Design Series 

(MDS)? 

5. Can the models produced by this research be used as an effective decision tool 

for the Centralized Asset Management (CAM) office?  

  

Chapter Summary   

 In this chapter, we described the current fiscal environment in which the Air 

Force must operate.  We outlined the need for a robust analytical process or tool that can 

guide resource allocation decisions in an attempt to optimize aircraft availability.  Finally, 

we outlined the purpose of this study and listed our research questions. 

  The rest of this paper is structured as follows:  Chapter II provides background 

relating to aircraft availability, a summary of previous research, and a review of the 

resource allocation process.  In Chapter III, we describe our dataset and outline the 

methods that will be used to analyze our data.  Next, we present the results and analysis 

in Chapter IV.  Finally, we summarize the results and provide policy implications based 

on our findings in Chapter V.   
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II:  Literature Review 

 

 Given our research questions and overall objective, we seek to expand our 

knowledge concerning aircraft availability and the variables that may affect AA rates.  

We begin this chapter by discussing the importance of maintaining an adequate quantity 

of mission capable aircraft and provide an overview of the metrics used by the Air Force 

to assess the health of its fleet.  Next, we summarize the findings of previous research 

concerning the factors that may affect aircraft availability.  Then, we review several 

models that have been developed and used by the Air Force to forecast aircraft 

availability.  Finally, we provide the reader with an understanding of both the old 

resource allocation process and the new process developed through ongoing Air Force 

initiatives.     

 

Mission Impact of Low Aircraft Availability Rates 

 As we stated earlier, the mission of the U.S. Air Force is “to fly, fight and win … 

in air, space and cyberspace.”  To achieve that mission, the Air Force relies on its six 

“distinctive capabilities” which include the following (DAF, 2003): 

1. Air and Space Superiority 

2. Global Attack 

3. Rapid Global Mobility 

4. Precision Engagement 

5. Information Superiority 

6. Agile Combat Support 
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Not surprisingly, each of these capabilities depends entirely or in part on the 

availability of the right mix of Air Force aircraft.  Simply put, without a sufficient 

number of mission capable aircraft ready to fly at any given time, the Air Force cannot 

perform its stated mission. 

 The importance of AA extends to the unit-level as well.  Perhaps the most direct 

costs associated with inadequate AA are lost training opportunities.  Pilots and their 

associated aircrew members require a certain number of sorties and flying hours per 

month depending on the aircraft they fly and the missions they are training to support.  

AFI 11-(MDS specific volume) specifies exactly what is required for each weapon 

system aircrew to maintain combat mission ready (CMR) status (Lipina, 2009).  AFI 11-

2F-16 Volume 1 defines CMR as “the minimum training required for pilots to be 

qualified and proficient in all of the primary missions tasked to their assigned unit and 

weapon system” (DAF, 2007:8).  In the case of F-16 aircrew, pilots are required to fly 

nine or ten sorties per month depending on whether they are experienced or 

inexperienced.  If this training requirement cannot be met because not enough aircraft are 

available, aircrew members may be placed on probation or non-CMR status at the 

discretion of the squadron commander.  If aircrew members who are on probation fail to 

meet the minimum CMR requirements the following month, they will be demoted to non-

CMR status (Lipina, 2009).  This scenario would result in degraded readiness of an entire 

unit and decreased operational flexibility.  

Maintainers experience lost training opportunities as well.  When AA rates are 

low, maintainers feel pressure to fix aircraft quickly using whatever resources are 

available.  Often this means cannibalizing parts from one aircraft to support another 
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aircraft.  Cannibalizing parts requires a maintainer to spend time removing a part from 

one aircraft and then installing the part on another aircraft.  The extra time involved may 

result in lost training opportunities for themselves or a lost opportunity to train others 

(Oliver, 2001). 

Many of the other costs associated with low AA rates are so intertwined with AA 

rates themselves that it is hard to decouple the cause and the effect.  For example, low 

AA rates decrease morale and increase the workload and stress for maintainers, which 

may negatively affect retention rates.  When second term and career airmen decide to 

separate, the workload increases for the remaining airmen, especially the 5- and 7-level 

maintainers.  Not only do these technicians have to perform more work on aircraft, but 

also their supervisory and training responsibilities increase as the ratio of 3-level airmen 

increases.  This means that the need for supervision and on-the-job training increases at 

the same time the workload increases because of the need to generate aircraft (Oliver, 

2001).  As we have shown here, the cost of low AA rates are extensive and may have 

enduring negative consequences. 

 

Fleet Management Metrics Overview 

 In Air Force maintenance organizations, metrics are used extensively to assess the 

quality, quantity, and timeliness of the maintenance actions being performed as well as 

the overall health of the fleet and even the readiness of the personnel.  However, when it 

comes to measuring the health of the fleet and the effectiveness of the maintenance 

performed, the two metrics that dominate are the AA rate and the MC rate. 
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 According to Air Force Instruction 21-101 (AFI 21-101) Aircraft and Equipment 

Maintenance Management, the MC rate is the percentage of unit-possessed hours that 

aircraft are either fully mission capable (FMC) or partially mission capable (PMC) for a 

specific period of measurement (e.g., weekly or monthly).  FMC status simply means that 

an aircraft can perform all of its assigned missions.  PMC status means that an aircraft 

can perform at least one, but not all of its assigned missions (DAF, 2006).  MC rate is 

calculated using equation 1. 

   (1) 

 AA, as defined by AFI 21-101, is the percentage of a fleet not in a depot status or 

not mission capable (NMC) status.  Alternatively, the AA rate is the percentage of a 

fleet’s total active inventory (TAI) that is available (mission capable).  NMC aircraft are 

aircraft that are unable to perform any of their wartime missions (DAF, 2006).  The AA 

rate is calculated using equation 2. 

                                         (2) 

 Intuitively, the complement of availability is nonavailability, which consists of 

five components: the unit possessed not reported (UPNR) rate, the depot rate, the not 

mission capable maintenance (NMCM) rate, the not mission capable supply (NMCS) 

rate, and the not mission capable both (NMCB) rate (AFLMA, 2009).  Insight into why 

AA rates are low may be garnered from investigating these five areas of nonavailability, 

which we will briefly explain. 

 As the name states, the UPNR rate is the percentage of a fleet’s TAI that are unit 

possessed, but not reported.  When an aircraft suffers major damage or is in need of 
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major maintenance, the owning unit may be required to wait for higher headquarters to 

make a decision regarding how to proceed.  During this time, the aircraft would be UPNR 

because the unit is waiting to be told what to do next.  Not surprisingly, the depot rate is 

the percentage of a fleet’s TAI that are in depot status.  Typically, these aircraft are either 

awaiting or undergoing depot level maintenance (AFLMA, 2009).  The NMCM rate is 

the percentage of possessed aircraft that are unable to perform primary assigned missions 

because the aircraft is in need of maintenance that will be carried out by the unit.  The 

NMCS rate is the percentage of possessed aircraft that are unable to execute primary 

missions for supply reasons (e.g., lack of spare parts).  Finally, the NMCB rate is the 

percentage of possessed aircraft that are unable to perform primary assigned missions for 

both maintenance and supply reasons (DAF, 2006).   

 As stated in the Air Force Logistics Management Agency’s handbook titled 

Maintenance Metrics U.S. Air Force and consistent with the goals of Expeditionary 

Logistics for the 21st Century (eLog21), the AA rate is the metric that will be used to 

measure the health of the fleet (AFLMA, 2009).  The primary reason that the AA rate is a 

more useful metric than the MC rate is that it reflects a more complete picture of the fleet.  

While the numerator is the same for both metrics, the denominator is different which 

results in a gap between the two rates.  The MC rate only considers aircraft that are 

possessed by operational units and ignores aircraft that are in UPNR and depot status.  

This means that the denominator is a fluid number and will always result in a rate that is 

greater than the AA rate.  The AA rate on the other hand reflects all aircraft in the fleet.  

Simply put, the AA rate answers a question that is central to assessing combat capability:  

How many jets are ready to fly?   
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Previous Research Reveals Factors Affecting Aircraft Availability 

 In our review of literature from the 1990s to 2009, we found an abundance of 

research completed by the Air Force Institute of Technology (AFIT), the Naval 

Postgraduate School (NPS), RAND, the Government Accountability Office (GAO), and 

the Air Force Logistics Management Agency (AFLMA).  The majority of these studies 

focused on identifying predictive factors to be used in forecasting MC rates.  While these 

studies have contributed a significant amount to the existing knowledge on AA, none of 

the research has focused directly on O&M costs.  Our investigation seeks to close this 

gap in knowledge. 

 Although our research focuses on AA, the majority of prior research discusses 

MC rates.  The reason for this is that MC rates were the most commonly used metric to 

assess fleet health until 2004 when Air Force decision makers introduced the AA metric 

as a part of eLog21 to provide an enterprise view of the total fleet (Tyler, 2009).  Since 

that time, some research has focused on AA rates and the factors that go into it, but not 

enough for the purposes of our literature review.  Nevertheless, research regarding MC 

rates will be sufficient since we know that total MC hours are the most significant factor 

in determining AA rates.   

 A study published in Air Force Journal of Logistics in 2001 identified 53 

variables that may affect MC rates (Table 1).  Previous research and history have shown 

that these factors may be grouped into six main categories: personnel, environment, 

reliability and maintainability, funding, aircraft operations, and logistics operations.  

While it is doubtful that an entirely complete list of factors could be created, this table 
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serves as a very good starting point for our research.  We will briefly discuss several of 

the more prevalent factors below. 

Table 1:  Potential Factors Affecting MC Rates (Oliver, et al., 2001) 

 

      Personnel 

 In his 2001 AFIT thesis, Captain Steve Oliver used correlation and regression 

analysis to identify factors associated with MC rates of F-16C/D aircraft.  His results 

showed that as the number of inexperienced personnel (measured by rank or skill level) 

increased, MC rates decreased.  Higher ratios of 3-levels to either 5- or 7-levels (or both) 

were also negatively correlated to MC rates.  Concerning reenlistment rates, Oliver 

determined that first term and career airmen along with the overall reenlistment rate were 

positively correlated with MC rates.  Additionally, the reenlistment rate of eligible crew 

chiefs showed a high degree of positive correlation.  Finally, the ratio of maintainers per 

aircraft, and total maintainers assigned demonstrated strong positive correlations (Oliver, 

2001).       
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 In a 2003 report, the GAO determined that shortages of maintenance personnel as 

well as a lack of experienced maintainers contributed to low MC rates (GAO, 2003).  

Similarly, research completed in 2004 on C-17 MC rates showed that crew chief manning 

levels have a significant positive relationship with MC rates (Huscroft, 2004).  Finally, an 

article published in the Air Force Journal of Logistics in 2007 examined F-16C/D MC 

rates and found the percentage of 7- and 9-level maintainers to be significant in 

explaining MC rates.  Specifically, the authors developed a model using just these two 

dependent variables to explain 82 percent of the variance observed in MC rates (Chimka 

and Nachtmann, 2007).  

      Environment 

 Concerning the operational environment, Capt Billy Gilliland used regression to 

test the relationship between 13 common measures of aircraft maintenance and several 

dependent variables in his 1990 AFIT thesis.  Among other findings, the analysis showed 

a positive correlation between MC rates and the average number of possessed aircraft 

(Gilliland, 1990).   

 Intuitively, aircraft age is a likely consideration when discussing availability.  The 

GAO confirmed this notion citing aircraft age as a factor that affects MC rates.  

According to interviews with logistics officials from the services, aircraft failure rates 

follow a curve that is similar to the “bathtub curve” depicted in Figure 2.  While the Air 

Force’s inventory continues to age, failures become more common as aircraft reach the 

end of their useful life.  Exacerbating this effect are increased deployments over recent 

years, which has forced aircraft to operate at higher than normal rates and has accelerated 

aging concerns (GAO, 2003). 



13 
 

 

Figure 2:  Bathtub Curve (Wilkins, 2002) 

 Prior to 2002, the Air Force structured its flying units under what was called an 

“Objective Wing Structure.”  Maintenance organizations reported to either the operations 

group commander or the logistics group commander.  In October of 2002, the Air Force 

transitioned to the “Combat Wing Structure,” which aligned all maintenance units under 

a maintenance group commander with the goals of “enhancing core competencies, 

improving aircraft sortie production, and improving fleet health” (Barthol, 2005:3).  

Research completed in 2005 concluded that this organizational change was effective in 

meeting its stated goals (Barthol, 2005).     

      Reliability & Maintainability 

 Gilliland showed a negative correlation between MC rates and both the 

cannibalization rate and awaiting maintenance discrepancies (Gilliland, 1990).  Next, 

Lieutenant Commander Patricia Moore showed that cannibalizations are negatively 

correlated with FMC rates of deployed aircraft (Moore, 1998).  Lastly, Oliver’s research 

found a strong positive correlation linking 8-hour fix rates and MC rates (Oliver, 2001).  
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Funding 

 According to a RAND study completed in 2009, aircraft maintained by contractor 

logistics support (CLS) have a higher proportion of contractually fixed costs each year 

than organically supported aircraft.  RAND states that as a result “CLS programs have 

been less affected by funding instability than have organically supported programs, which 

must often reduce funding for spare parts when budgets are cut” (Boito, 2009:46).  To 

illustrate this point, RAND compared the total not mission capable supply (TNMCS) 

achieved rates and standards between CLS and organically supported aircraft with the 

same mission over a three-year period.  Figure 3 illustrates a representative sample of 

their findings (Boito, 2009).   

 

Figure 3:  Comparison of TNMCS Rates and Standards for CLS and Organically Supported Trainer Aircraft 
(Boito, 2009) 

 While all aircraft exceeded their respective standard, CLS aircraft are held to a 

much tougher standard than organic aircraft.  RAND argues that CLS aircraft achieve 

better (i.e., lower) TNMCS rates because they receive more funding than organic aircraft.  
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RAND further concludes that high AA rates are “largely a function of the resources 

devoted to maintain them” (Boito, 2009:46).   

  Additionally, the GAO reports that officials from all the services blame 

underfunding spare parts inventories, maintenance depots, and other areas of maintenance 

and supply as a reason for low MC rates (GAO, 2003). 

      Aircraft Operations 

 Moore’s analysis found that an increase in the number of sorties causes FMC 

rates to increase; however, an increase in the number of sorties combined with an 

increase in the number of cannibalizations causes FMC rates to significantly decrease 

(Moore, 1998). 

      Logistics Operations 

 Pertaining to logistics, Gilliland determined that awaiting parts discrepancies are 

negatively correlated with MC rates (Gilliland, 1990).  Moore’s research found that FMC 

rates increase as the percentage of requests for consumable or repairable items that are 

filled in one to two days increases (Moore, 1998).  Oliver’s research found that the most 

significant correlations between logistics variables and MC rates appeared with a lag of 

two quarters; however, the statistical significance was not strong enough to warrant 

inclusion in his models (Oliver, 2001).  Lastly, the GAO reports that shortages of spare 

parts contribute to low MC rates.  They say that this may be caused by underestimates of 

demand, contracting issues, or other problems (GAO, 2003).  We summarize the findings 

of previous research in Table 2. 
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Table 2:  Variable Correlations with Aircraft Availability Rates 

Category Variable Correlation Author 

Personnel 

Ratio of 3-levels to 5-levels Negative Oliver, 2001 
Ratio of 3-levels to 7-levels Negative Oliver, 2001 

Total # of Inexperienced 
Maintainers by Rank or Skill 

Level 
Negative Oliver, 2001 

Maintainers Per Aircraft Positive Oliver, 2001 
Total # of Maintainers Positive Oliver, 2001 

Overall Reenlistment Rate Positive Oliver, 2001 
Reenlistment Rate of First-

Term Airmen Positive Oliver, 2001 

Reenlistment Rate of Career 
Airmen Positive Oliver, 2001 

Reenlistment Rate of Eligible 
Crew Chiefs Positive Oliver, 2001 

Crew Chief Manning Levels Positive Huscroft, 2004 
Percentage of 7-level 

Maintainers Positive Chimka and 
Nachtmann, 2007 

Percentage of 9-level 
Maintainers Positive Chimka and 

Nachtmann, 2007 

Environment 

Average # of Possessed 
Aircraft Positive Gilliland, 1990 

Aircraft Age 
Mixed 

(Bathtub 
Curve) 

GAO, 2003 

Transition to Combat Wing 
Structure in 2002 Positive Barthol, 2005 

Reliability & 
Maintainability 

Cannibalization Rate Negative 
Gilliland, 1990; 
Moore, 1998; 
Oliver, 2001 

Awaiting Maintenance 
Discrepancies Negative Gilliland, 1990 

8-Hour Fix Rate Positive Oliver, 2001 
Funding CLS supported Positive RAND, 2009 

Aircraft Operations Sorties Mixed Moore, 1998;  

Logistics Operations 

Awaiting Parts Discrepancies Negative Gilliland, 1990 
% of Requests for 

Consumables Filled in 1-2 
days 

Positive Moore, 1998 
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Establishing Aircraft Availability Goals 

 According to AFI 21-103, Equipment Inventory, Status and Utilization Reporting, 

“MAJCOMs establish capability goals in coordination with the Air Staff to include but 

not limited to MC, total not mission capable maintenance (TNMCM), and TNMCS. 

These goals enable HQ USAF to assess resource allocation funding on a quarterly basis” 

(DAF, 2005:9).  Although these lines are taken from the most current version of AFI 21-

103, the information is outdated.  Since implementation of eLog21 (which we will 

discuss in detail later in this chapter), the MAJCOMs no longer set their own capability 

goals.  Instead, the Air Force Directorate for Logistics, Installations & Mission Support 

(AF/A4/7) sets common capability standards for each weapon system (i.e., MDS) across 

active duty units and a complementary set of standards for guard and reserve units (Tyler, 

2009).   

 In 2007, the Chief of Staff of the Air Force--Weapon System Review directed 

emphasis on AA instead of MC rates when assessing fleet health (Tyler, 2009).  Shortly 

thereafter, AF/A4/7 developed a methodology for determining AA standards, given in 

equation 3. 

          (3) 

 In this equation, primary aircraft inventory (PAI) is the number of aircraft 

assigned to a unit for the performance of its operational mission. The MC standard is 

based on the summation of MC hours required for all units to meet their operational, 

training, and test requirements (HQ AFMC/A4, 2009).   

 Since this equation is tied directly to MC rate standards, the value-added from this 

new metric is uncertain.  Currently, AF/A4 is working on developing a new methodology 



18 
 

with the goal of directly linking AA standards to readiness and decoupling AA from MC 

standards (Tyler, 2009).   

 

Aircraft Sustainability Models and Aircraft Availability Forecasting Models 

 Over the years, the Air Force has used many different models to forecast MC and 

AA rates as well as the resources required to support its weapon systems.  Although 

many of the models have been proven to provide useful results, there is currently no 

approved Air Force method to forecast MC or AA rates (OSD, 2009).  We examine 

several of the prevailing models in order to gain an understanding of the techniques and 

variables that are used, as well as to see what role, if any, O&M costs have played.   

      Logistics Composite Model 

 Created in the late 1960s, the Logistics Composite Model (LCOM) is a 

“stochastic, discrete-event simulation that relies on probabilities and random number 

generators to model scenarios in a maintenance unit by manipulating certain variables” 

(Cole et al., 2007:1).  Although the LCOM can calculate the resources required to support 

a weapon system at a given capability level (defined as sortie generation) considering a 

variety of variables, it is most prominently used by the Air Force to determine manpower 

levels in operational maintenance units.  Specifically, the LCOM is used by the 

MAJCOMs to establish 65-70% of their maintenance manpower requirements (Cole et 

al., 2007).  On the other hand, the LCOM does not directly consider the O&M funds 

needed to support a weapon system. 
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Aircraft Sustainability Model 

 The Aircraft Sustainability Model (ASM) is used to determine the number of 

spare parts required at Air Force bases and depots during wartime operations, peacetime 

operations, or combined operations.  Given a desired level of aircraft availability or other 

readiness measure, the ASM specifies the exact quantity and optimal mix of spare parts 

in order to meet that goal.  Logistics planners currently use the ASM for base-level 

applications such as calculating the spare parts needed to sustain a squadron of F-15s 

during a 60-day deployment in order to achieve an 80 percent AA rating at the end of day 

60 (Blazer and Sloan, 2007).  From our discussions with analysts currently working in the 

Air Force Materiel Command Cost Analysis (AFMC/FMC) office and the CAM office, 

we understand that this model does not inform enterprise level resource allocation 

decisions.  

      Mobility Aircraft Availability Forecasting Simulation Model 

 Beginning in 2003 and continuing through at least 2005, contractors from 

Northrop Grumman and Wright State University developed the Mobility Aircraft 

Availability Forecasting Simulation Model (MAAF) in response to the Air Mobility 

Command (AMC) Directorate of Logistics’ request for a better forecasting tool.  MAAF 

is an object-oriented modeling and simulation tool that is purportedly capable of 

predicting AA rates, providing “what if” analysis, and offering insight into problems that 

may affect AA (Wall, 2004; Ciarallo et al., 2005).  Although the model proved to be a 

useful prototype in laboratory conditions, AMC determined the model was not ready for 

implementation in real-world operations. 
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Funding/Availability Multimethod Allocator for Spares  

 As recently as 2001, the Air Forced utilized the Funding/Availability 

Multimethod Allocator for Spares (FAMMAS) model to forecast MC rates for each 

mission design series (MDS) in its inventory.  Employing time-series forecasting 

methods, FAMMAS uses the last three years of historical TNMCS and TNMCM data 

combined with past, present, and future spares funding to forecast MC rates.  While it 

produces useful results, time-series models like FAMMAS do not provide insight into 

potential cause-and-effect relationships that may be exploited to affect MC rates.  

FAMMAS produces its forecasts by simply projecting data trends, not by using 

explanatory models.  Furthermore, FAMMAS does not incorporate any operations, 

personnel, or environment-related variables in the model; it uses only TNMCS and 

TNMCM data that act as adjustment factors.  Consequently, FAMMAS is not an 

effective tool to use for policy or resource decisions because of the limited scope of 

variables used in the model and because the relationships between the variables are 

largely unknown (Oliver, et al., 2001).          

      Aircraft Availability Model 

Introduced as part of the Secondary Item Requirements System (D041 then, now 

D200A) in the late 1980s, the Aircraft Availability Model (AAM) is a tool that 

maximizes aircraft availability given some level of funding.  Using marginal analysis, the 

AAM is able to build AA curves (see Figure 4) which can be used to prioritize funding 

for a given set of weapon systems (Blazer and Sloan, 2007).  However, the AAM 

considers an aircraft available if it is not awaiting resupply of a spare part.  This means 

that the model is only concerned with minimizing the TNMCS rate given some level of 
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funding; it does not account for the other aspect of non-availability such as the NMCM, 

depot, or UPNR rates.  The Air Force logistics community uses the model to compute the 

quantities needed for safety levels of the spare parts that it manages. The resulting safety 

levels become part of the overall requirement that drives budget requests, repair planning, 

and spare parts purchases (Hill, 2007).   

 

Figure 4:  Aircraft Availability Curve (Blazer and Sloan, 2007) 

 

Weapon System Sustainment Resource Allocation Process Prior to Centralized 

Asset Management 

 Prior to FY2008, the Air Force replicated the process to determine weapon system 

sustainment requirements, allocate resources, and execute funds across each of the ten 

MAJCOMS (including the Guard and Reserves) through stove-piped business areas.  

Figure 5 approximately represents this process.  Requirements determination began with 

the MAJCOMS developing their individual requirements with input from AFMC product 

and logistics centers.  Then, each MAJCOM created their budget and program objective 

memorandum (POM) inputs based on those requirements and submitted them to Air Staff 
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(Naguy and Keck, 2007).  At this stage, requirements usually exceeded the resources 

available so resources were allocated on a “percent funded” basis (McKown, 2009).  

After enactment of funds, Air Staff sent funds to the MAJCOMS for execution.  Finally, 

the MAJCOMS provided funds to the appropriate AFMC product and logistics centers 

for every program they operated on an expense-by-expense basis for execution.  

Additionally, product and logistics centers, depots, and supply operations exchanged 

funds within AFMC.  As a result, over two million transactions occurred every year 

between AFMC’s supply and maintenance activities alone (Naguy and Keck, 2007). 

  

Figure 5:  Pre-FY2008 Requirements Determination, Resource Allocation, & Execution Process                 
(Naguy and Keck, 2007) 

 This process resulted in numerous inefficiencies, shortcomings, and unfavorable 

outcomes.  Every command devoted significant time, money, and manpower into parallel 

activities.  Since the process started at low organizational levels, the lead-time for 

formulating requirements was pushed well ahead of the execution of funds, which limited 

the flexibility of the entire process to respond to changing conditions.  Next, because each 
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of the commands was concerned with getting their fair share of the available sustainment 

funds, the process encouraged an adversarial relationship between the operating 

MAJCOMS, Air Staff and AFMC.  Furthermore, since resources were traditionally 

allocated on a “percent funded” basis, MAJCOMs had an incentive to artificially inflate 

their actual requirements so that they might avoid receiving only a percentage of what 

they had requested (Naguy and Keck, 2007).  Additionally, this practice of unconstrained 

requirements determination was left virtually unchecked because resource allocation was 

not based on performance (McKown, 2009). 

  Fleet management was possibly the biggest shortcoming of the old resource 

allocation process.  In many cases, more than one MAJCOM operates a particular 

weapon system.  As an example, six MAJCOMs currently fly the F-15.  Under the old 

process, six operating MAJCOMs determined their requirements for their share of the F-

15 fleet, but no single organization or individual was responsible for the resources 

necessary to support the fleet as a whole.  As a result, one weapon system was “owned” 

by six separate entities, but no single entity had the scope or authority necessary to 

manage the entire fleet from a holistic perspective (Naguy and Keck, 2007).       

 Finally, due to the different procedures used and subsequent inconsistencies 

inherent in the requirements determination and resource allocation process, there was not 

a feasible way to determine the impact of funding reductions on aircraft availability.  This 

shortcoming meant that Air Force leaders were unable to know if the needs of the 

warfighter were going to be met in an environment of constrained resources (McKown, 

2009). 
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Expeditionary Logistics for the 21st Century and Centralized Asset Management 

 Given the myriad shortcomings of the status quo, the Air Force needed to find a 

better way of doing business.  As a result of direction from Air Force leaders and 

consistent with the ubiquitous and overarching Air Force Smart Operations for the 21st 

Century (AFSO21) effort, the Air Force Logistics community developed eLog21 as a 

strategic action plan that seeks to “fundamentally change the way logistics is 

accomplished Air Force wide” (eLog21 Fact Sheet, 2009).  According to the eLog21 fact 

sheet, the campaign is composed of a number of initiatives and ultimately strives to reach 

two goals: increase equipment availability to match aircraft availability (AA) targets, and 

reduce operations and support (O&S) costs by 10% (eLog21 Fact Sheet, 2009).   

 CAM is a specific eLog21 initiative undertaken jointly by AF/A4P, SAF/FMB 

and AFMC whose mission is to “centralize and integrate management of Air Force 

sustainment to optimize warfighting capability through effective and efficient allocation 

of resources across the enterprise” (Naguy and Keck, 2007:5).  To achieve this mission, 

CAM centralizes programming, budgeting, and execution of weapon system resources 

within AFMC while standardizing and streamlining requirements determination for the 

Active Duty Air Force; currently, CAM does not manage weapon systems operating in 

Air Force Reserve Command (AFRC) or the Air National Guard (ANG).  As a result, 

CAM provides the Air Force with an enterprise level view of its fleet, which makes it 

possible to maximize warfigthing capability through the optimization of aircraft 

availability (Naguy and Keck, 2007).  In a nutshell, CAM was created to fix the 

burdensome requirements determination, resource allocation and execution process 

described in the previous section.   
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 Beginning in fiscal year 2008, CAM implemented the new process depicted in 

Figure 6.  Requirements determination begins with the lead MAJCOMs for each 

particular weapon system working with the additional user MAJCOMs to formulate total 

system requirements.  Then, the lead MAJCOMs collaborate with AFMC product and 

logistics centers to finish developing and prioritizing requirements from an Air Force 

enterprise perspective.  Once completed, AFMC submits a consolidated POM and budget 

request to Air Staff.  Following enactment of funds, AFMC provides money directly to 

the appropriate product centers and logistics centers for execution.  Finally, CAM has the 

ability to manage sustainment resource trade space throughout the year of execution 

because there are no longer multiple “owners” and multiple “checkbooks” being 

maintained by the MAJCOMs; resources are now holistically managed by the CAM 

office (Naguy and Keck, 2007).     

 

Figure 6:  New Centralized Asset Management Process (Naguy and Keck, 2007) 
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We are interested in the new CAM process because it lays the foundation to 

provide the Air Force with the organizational structure necessary to holistically manage 

weapon systems.  In other words, given this new process, the Air Force will be able to 

use O&M funding as a tool to optimize aircraft availability.  However, the Air Force 

must use the correct metrics to measure weapon system availability and it must employ 

robust analytical tools to guide resource allocation decisions.  We argue that the Air 

Force is using the correct metrics to measure weapon system availability; however, it 

does not currently have robust analytical tools or processes in place to guide its resource 

allocation decisions.  Our research seeks to establish a definitive link between O&M 

costs and AA so that decision makers will have the information they need to optimize 

AA. 

  

Chapter Summary 

 In previous sections, we discussed the importance of maintaining an adequate 

quantity of mission capable aircraft and provided an overview of the metrics used by the 

Air Force to assess the health of its fleet.  We summarized the findings of previous 

research concerning that factors that may affect aircraft availability.  Then, we provided 

an explanation of how the Air Force establishes AA rate standards.  Next, we reviewed 

several models that have been developed and used by the Air Force to forecast AA rates.  

Finally, we detailed how the Air Force previously determined weapon system 

sustainment requirements, allocated resources, and executed funds.  We explained how 

eLog21 and its subsequent initiative Centralized Asset Management have provided the 

organizational change necessary to allow the Air Force to manage its sustainment 
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resources holistically.  Despite the significant amount of research already accomplished, 

we find a significant gap concerning the relationship between O&M costs and AA, and 

thus see the need for further analysis.   
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III:  Data Collection and Methodology 

 

 As we have shown in the literature review, a multitude of factors influence AA 

rates.  Due to the complexity and numerous relationships that are possible among the 

factors, we collected data for an assortment of variables in order to build a dataset 

sufficient for constructing explanatory models.  First, we explain the scope of our data 

collection and research.  Second, we acknowledge the sources that we used to obtain the 

data.  Third, we describe each of the variables while discussing the limitations within the 

dataset.  Next, we describe how we analyze the variables in order to gain a better 

understanding of their characteristics and predictive ability.  Finally, we discuss the 

methods that we use to build our explanatory models and generate results. 

 

Scope of Data Collection and Research 

 The availability and reliability of data, specifically the data needed to capture 

O&M costs, determines the scope of our research.  Much of the knowledge we rely on to 

make decisions regarding our cost data come from interviews with contractors who 

maintain the Air Force Total Ownership Cost (AFTOC) database and an AFTOC users’ 

training workshop.   

As we discussed in Chapter II, the scope of CAM’s mission extends only to the 

Active Duty Air Force; it does not manage the O&M funds for weapon systems that 

operate in AFRC or ANG.  For this reason, we only analyze Active Duty aircraft in our 

study because our ultimate goal is to advance the analytical capability of CAM by 

demonstrating a definitive link between O&M spending and AA.  Additionally, research 
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and development appropriations fund the majority of weapon systems operated by Air 

Force Materiel Command (AFMC), not O&M appropriations.  Thus, we will not include 

any data attributable to aircraft assigned within AFMC.   

At the beginning of FY1998, the Air Force made significant changes to 

accounting classifications, particularly those codes that capture costs related to flying 

operations.  Therefore, our data collection begins with FY1998.  The data maintained in 

AFTOC are subject to updates on a recurring basis as new information becomes available 

and corrections are made.  Because of this, our last period of data is for the fourth quarter 

of FY08.  We reason that data from this period should be static and no longer subject to 

significant updates or corrections.  Finally, in an attempt to keep our definition of O&M 

costs standard across all MDS, we only evaluate organically maintained aircraft in our 

study.  CLS maintained aircraft report their costs to different accounting classifications 

than organically maintained aircraft so the costs are not directly comparable.       

Since we will analyze only Active Duty (excluding AFMC), organically 

maintained aircraft with data from 1998 – 2008, we can further narrow the scope of our 

research to MDS that fit this criteria.  Specifically, we choose to analyze aircraft that 

have data available from 1998 – 2008, that are still in the active Air Force inventory, and 

that have a TAI of at least 19.  Table 3 lists the MDS that we analyze in this study. 

Table 3:  List of MDS Chosen for Study 

MDS 
A-10A 

OA-10A 
B-1B 
B-2A 
B-52H 
F-15C 
F-15D 

F-15E 
F-16C 
F-16D 

KC-135R 
KC-135T 

T-38A 
T-38C 
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Data Sources and Variables      

      Data Sources 

 We obtained data for this study using three databases:  the Logistics Installations 

and Mission Support – Enterprise View (LIMS-EV) database, the AFTOC management 

information system, and the Reliability and Maintainability Information System 

(REMIS).  Created as an eLog21 initiative, LIMS-EV provides a single point of entry to a 

variety of legacy data systems such as REMIS and the Multi-echelon Resources and 

Logistics Network (MERLIN).  LIMS-EV allows users to acquire standardized data and 

tracks metrics, trends, and results (LIMS-EV Fact Sheet, 2010).  We found the AA, 

aircraft age, TAI, and cannibalization data using LIMS-EV.  AFTOC is a tool that 

integrates cost, logistic, and personnel data from more than a dozen legacy systems into a 

single format.  In order to present useful, coherent data, AFTOC assigns (or allocates 

when required) the data to weapon systems, bases, and MAJCOMs according to standard 

business rules (AFTOC, 2009).  Our O&M cost and personnel data came from the 

AFTOC database.  REMIS is the Air Force’s primary database for aircraft usage data.  

Similar to LIMS-EV and AFTOC, REMIS interfaces with a variety of other systems to 

provide consolidated data (Oliver, 2001).  We used REMIS to retrieve our data for flying 

hours, sorties, and landings. 

      Dependent Variable:  Aircraft Availability 

 Our goal in this study is to develop explanatory models that will demonstrate a 

definitive link between O&M costs and AA.  Thus, AA will serve as our dependent 

variable.  We retrieved our data from LIMS-EV at the MDS level, by MAJCOM, by 

fiscal year quarter.  AA is most commonly expressed as a rate; however, we also obtained 
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AA data in the form of the average number of available aircraft and the total number of 

available hours.  Table 4 shows an example of this data.       

Table 4:  Subset of Normalized Aircraft Availability Data from LIMS-EV 

 

      Independent Variable:  O&M Costs  

 Our primary independent variable of interest in this study is O&M costs.  

Specifically, we are interested in those costs that can be directly attributed to supporting 

the flying operations of a given MD or MDS.  For this reason, the availability and 

reliability of data for this variable determine the scope of our research. 

 Element of Expense/Investment Code (EEIC) 644, also known as Material 

Support Division (MSD), contain costs directly associated with the flying hour program.  

Costs for EEIC 644 can be further disaggregated by transaction type.  Fly-depot level 

repairables (DLRs) are recorded as transaction type XD2, consumable items are coded 

XB3, and base level repairable items are labeled XF3.  Transactions may occur as 

charges or credits; however, our data only consider the resulting net costs.  Additional 

consumable costs are found in EEIC 609 (General Supply Division), but these costs are 

not considered because their range extends far beyond flying operations.  Furthermore, 

EEIC 645 contains other DLR costs, but we exclude these costs from our study as well 

because they are not “fly-DLRs.”  It is also worth noting that CLS costs are accounted for 



32 
 

in EEIC 578, but as we mentioned previously, CLS aircraft will not be included in our 

research.  Our study only considers those costs contained in EEIC 644 because it 

represents the segment of O&M costs that are directly attributable to flying operations.   

 EEIC 644 costs in AFTOC are simultaneously allocated to the MDS they were 

used to support, indicated by the “Mission Design Series—Standard Reporting 

Designator (MDS SRD)” column heading, in addition to the weapon system whose 

program element code (PEC)  was used to pay the bill, reflected by the “Mission 

Design—Cost Analysis Improvement Group (MD CAIG)” column heading.  In the 

majority of circumstances these two fields match, in which case there is no problem.  

When the MDS SRD field does not match the MD CAIG field, we simply allocate the 

dollars to the weapon system identified in the MDS SRD field because that is the system 

supported by the expenditure.  However, two cases arise that force us to make some 

judgmental allocations based on the information available. When the MDS SRD field 

contains “null” (no data entered), we look to the MD CAIG field for information.  If there 

is a weapon system identified in the MD CAIG field, we allocate the costs to that weapon 

system as the next best alternative based on the advice of contractors who maintain the 

AFTOC database.  In the rare cases where both fields are “null,” we discard the data 

since we have no means of identifying the correct MDS.  Table 5 shows an example of 

the raw cost data retrieved from AFTOC. 
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Table 5:  Subset of Raw Cost Data from AFTOC 

 

 The cost data for the weapon systems we evaluate include 11,745 rows of data.  

MDS SRD contains 3,593 values that are “null” (30.6% of the data); however, only 174 

entries contain “null” in both MDS SRD and MD CAIG (1.5% of the data).  This means 

that we relied on our allocation heuristic to account for 29.1% of the cost data and we 

discarded an additional 1.5% of the data. 

 As a final means of normalizing the data, we used inflation rates approved by the 

Office of the Secretary of Defense to convert all costs to CY08$.      

      Additional Independent Variables 

 In order to have adequate information to build explanatory models, we collected 

data on variables that have been shown in previous research to have predictive ability 

with respect to AA.  The following sections detail our remaining independent variables. 

 Usage Variables.  We obtained quarterly flying hour, sortie, and landing data for 

each MDS, by MAJCOM from the REMIS database.  REMIS assigns the data both to the 

command that owns the aircraft, and to the command that is operating the aircraft.  As 

one would expect, the owning command and the operating command are the same in the 

vast majority of situations.  However, circumstances arise where one unit may loan 

aircraft to another unit for a given period.  In this situation, we ignore the operating 
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command and allocate the usage data to the command possessing the aircraft.  This 

heuristic follows the same logic we discussed previously concerning the allocation of 

O&M cost data.  Table 6 shows an example of the raw usage data obtained from REMIS.    

Table 6:  Subset of Raw Usage Data from REMIS 

 

Inventory Variables.  LIMS-EV contains data for average aircraft age, average 

airframe hours, TAI, and PAI.  As we discussed in Chapter II, TAI and PAI are two 

different concepts.  However, through conversations with LIMS-EV customer support 

representatives and analysts in the AF/A4LY (Weapons System Division), we learned 

that LIMS-EV does not reflect these terms accurately.  At the time of this writing, data 

provided from LIMS-EV under the column heading TAI is erroneous and the actual TAI 

is represented under the “Poss’d” column heading.  With that said, we acquired quarterly 

data for TAI and monthly data for average age and average airframe hours for each MDS, 

by MAJCOM.  In order to remain consistent with the periods of data we collected for the 

other independent variables and the dependent variable, we translate the monthly data 

into quarterly periods by using only the observations for the last month of each quarter 

(December, March, June, and September).  Admittedly, we could have averaged the data 

over each quarter to achieve the same objective, but for ease of computation and data 

aggregation, we took the former approach.  Furthermore, average age exhibits a perfect 
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linear trend over time, which means our analysis is not affected by the choice we made in 

normalizing our data.   Table 7 shows an example of the raw inventory data from LIMS-

EV. 

Table 7:  Subset of Raw Inventory Data from LIMS-EV 

 

Maintenance Variables.  We retrieved maintenance data from LIMS-EV that 

represent the various states of disrepair aircraft may be coded.  Specifically, we collected 

data on cannibalization hours and the five possible statuses of non-available aircraft, 

which are the depot, NMCM, NMCS, NMCB, and UPNR rates.  We do not include the 

variables representing non-availability in our models since they would not provide any 

useful explanatory information, but we do use cannibalization hours as an independent 

variable.  Although cannibalization hours represent non-availability, the practice of 

cannibalizing aircraft is a proven method of providing necessary parts to other aircraft in 

the fleet (Oliver, 2001). 

Personnel Variables.  AFTOC maintains annual data on the actual number of 

personnel assigned to support a given MDS by AFSC for both officers and enlisted.  We 

obtained data reflecting specifically maintenance personnel for our study.  We further 

disaggregated the data by separating the data for officers from enlisted and also grouping 

the enlisted data by skill level (1, 3, 5, 7, 9, or 0).  Enlisted personnel typically enter a 
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career field as a skill level one and progress upwards based on their time served in that 

field and their demonstrated level of expertise; chief master sergeants are automatically 

designated as skill level zero.  Disaggregating the data in this manner allows us to 

analyze more relationships such as the effect that higher proportions of low skill level 

maintainers have on AA rates.  In order to translate the annual periods into quarterly 

periods, we reason that the number of assigned personnel fluctuates little over the course 

of a year so we simply use the annual figures for all four quarters of the year.  Table 8 

shows an example of the raw personnel data retrieved from AFTOC.     

Table 8:  Subset of Raw Personnel Data from AFTOC 

 

Dummy Variables:  Location, Season, and Aircraft Characteristics.  We created 

dummy variables to represent the location, season, and characteristics of our MDS.  We 

use four location dummy variables to represent the five MAJCOMs and three seasonal 

dummy variables to represent the four quarters in our study.  We also create dummy 

variables to represent each of the MDS groups and aircraft types in our study.                

Table 9 provides a list of the dummy variables we created.   
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Table 9:  List of Dummy Variables 

MAJCOM Quarter MDS Group Aircraft Type 
AETC 
AMC 

PACAF 
USAFE 

(ACC is the base 
case) 

Q2 
Q3 
Q4 

(Quarter 1 is the base 
case) 

B-1B 
B-2A 
B-52H 

F-15C/D 
F-15E 

F-16C/D 
KC-135 

T-38 
(The A-10 group is 

the base case) 

Bomber 
Fighter/Attack 

Heavy 
(Trainers are the base 

case) 

      Data Aggregation 

 Our data can be analyzed on three separate dimensions: 1) type of aircraft, 2) 

level of assignment of aircraft, and 3) units of time.  First, it is possible to aggregate 

aircraft data at a high level based on aircraft type (e.g. fighter or bomber) or at lower 

levels such as MD (e.g. F-15 or A-10) or MDS (e.g. F-16C or F-15E).  In his dissertation 

published by RAND in 2008, Lt Col Eric Unger argued that O&M costs at the MDS level 

in AFTOC suffer from data validity concerns.  Specifically, he found that some costs 

were allocated from the MD level to the MDS level based on proportion of flying hours 

instead of actual expenditures for each MDS within the given MD.  Consequently, some 

data may be misallocated within the MD and using the data in explanatory models would 

result in an overstatement of the relationship between flying hours and costs (Unger, 

2008).  Therefore, we evaluate aircraft at the MDS level only where AFTOC properly 

allocates costs. 

 In his 2008 AFIT thesis, 1Lt Tyler Hess created cost forecasting models for the 

Air Force flying hour program.  His research built on Unger’s findings such that he was 

able to analyze aircraft at the lowest possible level while still maintaining proper cost 
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allocation.  We build on Hess’s research and use the same MDS groupings that he proved 

properly represented O&M costs (Hess, 2009).  Table 10 shows the MDS in our study 

and their final MDS grouping for our research. 

Table 10:  Assignment of MDS to MDS Groups 

MDS MDS Grouping 
A-10A, OA-10A 

B-1B 
B-2A 
B-52H 

F-15C, F-15D 
F-15E 

F-16C, F-16D 
KC-135R, KC-135T 

T-38A, T-38C 

A-10 
B-1B 
B-2A 
B-52H 

F-15C/D 
F-15E 

F-16C/D 
KC-135 

T-38 

 Second, our data can be analyzed at different levels of aggregation based on 

location.  For example, data can be acquired as low as the base level, it can be aggregated 

to the MAJCOM level, or it can be further aggregated and analyzed at the Air Force 

level.  Hess found that analyzing cost and usage data at the base level presents construct 

validity concerns.  The crux of his argument was that costs are often misallocated at the 

base level of aggregation because organizations often pay for things that go towards 

supporting aircraft that they do not own.  By moving from the base to the MAJCOM 

level of aggregation, we are able to avoid much of the misallocation (Hess, 2009).  Thus, 

we choose to analyze our data at the MAJCOM level of aggregation for location.      

 Time is the final dimension for which our data can be aggregated.  Typically, data 

are available in monthly, quarterly, or annual periods.  In order to have sufficient data 

points for our analysis, we collected our data at the quarterly level of aggregation.       
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Final Database 

 Once our data was normalized and aggregated at the quarterly level, we used 

Microsoft Excel® and Microsoft Access® to create our final database.  Table 11 shows 

selected variables from the final database. 

Table 11:  Subset of Variables from Final Database 

 

 

Variable Analysis Methodology 

 Because of the large number of independent variables we obtained data for, we 

must investigate the potential predictive ability between each of them and the dependent 

variable before we attempt to build models.  Furthermore, we are interested in accounting 

for the possibility that lagging relationships may exist between the independent variables 

and the dependent variables.  To test for this condition, we lag each independent variable 

with respect to time one to four quarters into the future.  These variables will depict the 

relationship between an independent variable in one quarter and the dependent variable in 

future quarters.   

Correlation analysis is a convenient technique for expediently examining the 

linear relationships between variables.  Using JMP® release seven, we are able to 

construct a multivariate matrix that shows the linear relationship between every 
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combination of two variables.  We use the correlation coefficient, which is a measure of 

linear dependency between two variables on a negative one to one scale, to determine the 

degree of correlation between any two of the variables.  Coefficients with an absolute 

value of one prove a perfect linear relationship between two variables (Wooldridge, 

2006).   

In addition to providing insight into which variables will be useful in explanatory 

models, correlation analysis will help us identify potential cases of multicollinearity.  

Multicollinearity refers to a correlation between independent variables in a multiple 

regression model (Wooldridge, 2006).  Because instances of multicollinearity add 

confusion to a model by making it difficult to interpret the contribution of the 

independent variables, we avoid it by not including pairs of variables in our models 

where multicollinearity exists.  In order to identify specific cases of multicollinearity, we 

use JMP® to calculate variance inflation factors (VIF) for the independent variables in 

our models.  In practice, acceptable VIF levels are generally less than or equal to five or 

ten.  When VIF levels exceed these thresholds, it is a sign that a high degree of 

multicollinearity exists for two or more of the independent variables.  For our analysis, 

we accept VIF measures of less than or equal to five.   

We also examine the distribution of the data for each of our variables to determine 

if there is a need to perform discrete analysis.  Random variables that show irregular 

patterns in their data may provide better predictive ability if the data is categorized into 

discrete values (Wooldridge, 2006).  In such cases, we create dummy variables to 

represent the discrete data.   
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Model Building Methodology      

 Since we have numerous variables that may prove to be explanatory in predicting 

AA, we use multiple regression analysis to create our models.  Briefly stated, multiple 

regression allows us to simultaneously control for many variables when explaining the 

response.  In our case, this is an important attribute because we will be able to investigate 

the affect O&M costs have on AA, while controlling for several other factors at the same 

time.   

 Ordinary Least Squares (OLS) is the most commonly used method for estimating 

the parameters of the regression model and it is the method we use in our study.  OLS 

estimates the parameters by minimizing the sum of squared errors between the actual and 

predicted values of the model (referred to as the residuals).  OLS provides the best linear 

unbiased estimator for the parameters, given the assumptions of this technique are met.    

We discuss the assumptions later in this chapter.   

 In a general form, multiple regression equations take the following structure: 

Y = β0 + β1x1 + β2x2 + … + βkxk + ε     (4) 

Where: 

  Y = dependent variable  
  x1, x2, … xk = independent variables 
  β0 = the intercept 
  β1, β2, … βk = the population coefficients 
  ε = the random error component 

Our models are constructed in this fashion such that AA is explained to the maximum 

extent possible.  To guide our analysis, we use the five steps outlined below for building 

valid, useful models (McClave et al., 2008:666): 
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Step 1:  Hypothesize the deterministic component of the model.  This component 
relates the mean, E(y), to the independent variables x1, x2, … xk.  This involves 
the choice of the independent variables to be included in the model. 
 
Step2:  Use the sample data to estimate the unknown model parameters β0, β1, β2, 
… βk  in the model. 
 
Step 3:  Specify the probability distribution of the random error term, ε, and 
estimate the standard deviation of this distribution, σ. 
 
Step 4:  Check that the assumptions on ε are satisfied, and make model 
modifications if necessary. 
 

 Step 5:  Statistically evaluate the usefulness of the model. 

 

Testing Regression Assumptions 

 Step four in the model building process outlined previously requires that the 

assumptions of the random error term, ε, are satisfied.  The assumptions refer to the 

probability distribution of ε and are given as follows (McClave et al., 2008:667): 

Assumption 1:  Mean equal to zero. 
 
Assumption 2:  Variance equal to σ2 (also known as constant variance or 
homoscedasticity). 
 
Assumption 3:  Normal distribution. 
 
Assumption 4:  Random errors are independent (in a probabilistic sense). 

The validity of our models relies, in part, on the random error term meeting the 

assumptions outlined above.  We provide verification of the assumptions for all of our 

models and discuss deviations from the assumptions in Chapter IV.   

 In order to check that the first assumption is met, we rely on visual inspection of a 

plot of the residuals about a mean line of zero.  We test for compliance with the second 

assumption by visually analyzing the residual by predicted plots to determine whether 
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any irregular patterns of variance are present.  In addition, we use the Breusch-Pagan test 

to statistically determine whether homoscedasticity exists.  For this test, small p-values 

reject the null hypothesis of constant variance; therefore, large p-values are desired.  We 

test the third assumption by plotting the studentized residuals in a histogram for visual 

examination, followed by statistical validation using the Shapiro-Wilk test.  Similar to the 

Breusch-Pagan test, large p-values are preferred so that we may accept the null 

hypothesis of normality.  Failure to meet the fourth assumption is caused by 

autocorrelation of the residuals, meaning each residual is affected by the previous one.  

We check for autocorrelation by analyzing a plot of the residuals by row in order to see if 

any trends are obvious.  We further test this assumption using the Durbin-Watson test 

which tests for autocorrelation at lag one.  Empirical evidence shows that data for AA 

rates may be subject to positive autocorrelation (high residuals tend to be followed by 

high residuals, and negative residuals tend to be followed by negative residuals) (Oliver, 

2001).  Given this knowledge, we use a left-tailed test for positive autocorrelation and 

reject the null hypothesis of independence whenever p-values are less than 0.05. 

 In addition to the assumptions already discussed, we analyze every data point in 

our models using the Cook’s D Influence statistic.  This statistic measures the influence a 

given data point has on the overall model.  For our analysis, we specify large Cook’s D 

measures as those values over 0.5.  In cases where a data point has a Cook’s D value 

greater than 0.5, we re-run the model with that data point excluded in order to determine 

whether it should remain in the model.  If there are no significant changes to the p-values 

of the overall model or individual parameter p-values, we allow the data point to remain 
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in the model.  Additionally, we attempt to provide an explanation for why the data point 

was influential. 

 

Model Validation 

 In order to determine the robustness of the predictive ability of our explanatory 

models, we must validate our models.  To do this, we set aside the final 9 quarters of data 

from our original dataset (20 percent) while building our models.  Once our models are 

complete, we combine the independent variable data from the final nine quarters with the 

data used to build the model.  The dependent variable data for the last nine quarters 

remains excluded so that when the model is run in JMP®, we are able to generate 

prediction intervals for each of those quarters.  Finally, we are able to determine if the 

actual values of the dependent variable for the nine quarters fall within the prediction 

interval in addition to comparing the actual values to the values predicted by the model.  

Using this procedure for model validation allows us to evaluate our model’s usefulness 

when new data from outside the original sample is used for prediction.    

 

Chapter Summary 

In Chapter III, we outlined the scope of our research effort and detailed the data 

we use to perform our analysis.  We explained the statistical techniques we use to 

investigate the predictive ability of our data and construct our explanatory models.  

Lastly, we described how we test that the assumptions of our regression models are 

satisfied and how we validate the models’ usefulness.  In the next chapter, we describe 

our analysis and detail the results.   
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IV:  Analysis and Results 

 

 Using the methods described in the previous chapter, we discuss our analysis and 

the results of our study in Chapter IV.  First, we outline the challenges presented by our 

data and the techniques we use to overcome the problems.  Next, we evaluate the models 

created for each of the MDS in our study.  Finally, we summarize our results and discuss 

other techniques that we explore for establishing a relationship between O&M costs and 

AA. 

 

Adjustments to Data Required for Analysis 

 We begin by estimating models for each MDS by MAJCOM with AA hours as 

the dependent variable and total EEIC 644 costs, flying hours, sorties, landings, TAI, and 

average age as the independent variables.  Not surprisingly, we encounter problems with 

multicollinearity for several of the independent variables.  Table 12 is a correlation 

matrix of the variables in the model for ACC F-15C/Ds.  Although the data is different 

for every MDS and MAJCOM, the data we show for ACC F-15C/Ds is representative of 

the correlations we find with nearly all of the other MDS in our study.  Thus, we use this 

regression output as an example to explain the common problems encountered with all of 

the MDS in our study.   
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Table 12:  Correlation Matrix of Variables for ACC F-15C/Ds 

 AA Hrs Total 
EEIC 644 Fly Hrs Sorties Landings TAI Avg Age 

AA Hrs 1.0000 0.2620 0.8293 0.8727 0.8722 0.8940 -0.5135 
Total  
EEIC 644   1.0000 0.1047 0.2348 0.2344 0.1924 0.1589 

Fly Hrs   1.0000 0.8633 0.8637 0.8808 -0.7820 
Sorties    1.0000 1.0000 0.8755 -0.6050 
Landings     1.0000 0.8752 -0.6057 
TAI      1.0000 -0.7489 
Avg Age       1.0000 

 
 

Due to their obvious operational relationships, flying hours, sorties, and landings 

exhibit very high degrees of correlation.  In fact, sorties and landings are perfectly 

correlated for this dataset as exhibited with a correlation coefficient of 1.00, while flying 

hours yields correlation coefficients of 0.8633 and 0.8637 with sorties and landings, 

respectively (highlighted in bold in Table 12).  Additionally, we calculate VIF scores for 

these three variables as shown in Table 13; all measures exceed our threshold of five.   

Table 13:  VIF Scores for Usage Variables in Initial ACC F-15C/D Model 

Term VIF 
Fly Hrs 7.455 
Sorties 66724.138 
Landings 66644.096 

 

Therefore, we determine that it would be unwise to include more than one of the 

usage variables in our models since doing so would make it difficult to interpret the 

contribution of each variable to the model.  As a rule, we elect to use flying hours as our 

usage variable of choice in all models where it demonstrates predictive ability. 

Next, we see that changes in TAI over time in our dataset result in overstated 

relationships between AA hours and nearly all of the independent variables in our dataset, 

except average age.  The reason for this is simple.  TAI fluctuates as the result of several 

factors such as organizational or mission changes within operational Air Force units and 
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the retirement or acquisition of new aircraft.  When these events occur, it is natural for 

other changes to take place such as movement of personnel and resources.  If the number 

of aircraft is reduced, it follows that the number of operators and maintainers will 

decrease as well, resulting in fewer flying hours and fewer total available hours.  In order 

to address this problem, we convert all of our variables, with the exception of average 

age, into a rate of some kind.  AA is commonly expressed as a percentage so it makes 

sense to use the AA rate as our dependent variable.  For all of our independent variables 

(except age), we divide each data point by TAI which results in variables represented as a 

“per-aircraft” rate.  This procedure results in variables that show genuine relationships in 

our models and allow for direct comparison across MAJCOMs and MDS.    

 

Explanatory Models 

Using the model building process outlined in the previous chapter, we developed 

models for 16 of our 22 MDS by MAJCOM by quarter datasets.  Of those 16 models, 

only 2 found EEIC 644 costs as a predictive variable.  Nonetheless, we discuss the four 

best models in detail (those with an adjusted R2 of greater than 0.70), and then summarize 

the remaining models.  Appendix A contains a complete review of our results. 

KC-135 by AMC by Quarter 

 Table 14 highlights the summary statistics of our model for KC-135 aircraft in Air 

Mobility Command (AMC).  Only flying hours per TAI and the dependent variable 

lagged one period are included as independent variables.  We utilize the dependent 

variable lagged one period in this model because without it we notice first order 

autocorrelation with a Durban-Watson statistic of 0.46, which is significant at the 0.01 
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level.  Additionally, the model’s adjusted R2 falls from 0.86945 to 0.51178 without the 

lagged dependent variable included in the model.   

 Prior to accepting this specification as a useful model, we verified that the 

assumptions of normality, constant variance, and independence were met as described in 

the previous chapter.  Additionally, we checked for influential data points using the 

Cook’s D test and found that no observations were influential.  We provide the results of 

our diagnostic tests for this model in Appendix B.  

Table 14:  KC-135 (AMC) Explanatory Model 

Summary of Fit           
R2 0.87736 

   
  

Adjusted R2 0.86945 
   

  
Root Mean Square Error 0.02655 

   
  

Mean of Response 0.60528 
   

  
Observations (or Sum Wgts) 34         
Analysis of Variance           
Source DF Sum of Squares Mean Square F Ratio   
Model 2 0.15627 0.07813 110.887   
Error 31 0.02184 0.00070 Prob > F   
C. Total 33 0.17812   <.0001   
Parameter Estimates           
Term Estimate Std Error t Ratio Prob>|t| VIF 
Intercept 0.12256 0.04113 2.98 0.0056   
FlyHrs/TAI 0.00061 0.00015 3.99 0.0004 1.807 
1QLagAARate 0.67384 0.08413 8.01 <.0001 1.807 

 

 To test the robustness and validity of the model, we include the final nine periods 

of independent variable data and run the model in JMP®.  This process generates 

individual prediction intervals for the dependent variable at each of the nine periods.  

Theoretically, our model should be able to predict AA rates within the prediction 

intervals (at 95% confidence) 95% of the time.  We show the results of this analysis in 

Table 15 and Figure 7. 
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Table 15:  KC-135 (AMC) Sensitivity Analysis 

FY-Q 
Lower 95% 
Confidence  

Observed AA 
Rate 

Predicted AA 
Rate 

Upper 95% 
Confidence  

Absolute 
Percent Error 

2006-Q4 0.6524 0.6875 0.7095 0.7666 3.19% 
2007-Q1 0.6294 0.6235* 0.6854 0.7414 9.91% 
2007-Q2 0.5908 0.6223 0.6474 0.7039 4.02% 
2007-Q3 0.6029 0.6436 0.6618 0.7208 2.83% 
2007-Q4 0.6285 0.6351 0.6892 0.7500 8.53% 
2008-Q1 0.6104 0.6337 0.6686 0.7268 5.50% 
2008-Q2 0.6168 0.6112* 0.6767 0.7366 10.72% 
2008-Q3 0.6035 0.6619 0.6652 0.7268 0.49% 
2008-Q4 0.6487 0.6454* 0.7108 0.7729 10.14% 
*Observations fall outside prediction interval                                                            MAPE = 6.15% 

 

 Although this was our best model with respect to the adjusted R2 value, empirical 

results show that the observed AA rates fell within the prediction interval only 66.7% of 

the time.  We should also note that the prediction intervals had an average range of 0.12, 

which means that our model should predict AA rates within a window of 12 percentage 

points.  Given that this could mean the difference between achieving a stated goal for AA 

or falling well short, the prediction interval range produced by our model may be too 

large to be useful for Air Force decision makers.  Additionally, the mean absolute percent 

error (MAPE) for this model was 6.15%. 
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Figure 7:  KC-135 (AMC) Sensitivity Analysis 

 Figure 7 is useful because it visually shows the trend of AMC KC-135 AA rates 

over the last four years.  We can see that the AA rates observed during the last nine 

quarters are mostly lower than previous quarters.  Additionally, our model failed to 

predict this trend.  One possible reason is that the range of independent variable data used 

to produce the model does not reflect the range of data used to validate the model.  As a 

rule, a model's usefulness will suffer if it is used to predict a response outside the range of 

data from which it was created.  Specifically, the data we used when constructing the 

model for the flying hours per TAI variable ranged from a low of 67.6 to a high of 184.9.  

However, the data used for this variable when we validated the model exceeded this 

threshold seven times with values ranging from 187.9 to 232.4.  We show the ranges of 

independent variable data in Appendix C.    

      F-15E by ACC by Quarter 

 Our next model is for F-15Es in Air Combat Command (ACC).  Table 16 shows 

the summary statistics, which include an adjusted R2 of 0.80918.  We use cannibalization 
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hours per TAI, the total number of 1-, 3-, and 5-level maintainers per TAI, and the 

dependent variable lagged one period as independent variables.  Again, we include the 

lagged dependent variable in this model because without it we notice first order 

autocorrelation with a Durban-Watson statistic of 1.46, which is significant at the 0.05 

level.  Moreover, the model’s adjusted R2 drops to 0.75472 without the lagged dependent 

variable included in the model.   

 Just as we did with the first model, we verified that the assumptions of normality, 

constant variance, and independence were met, in addition to checking for influential data 

points.  Yet again, all assumptions were satisfied. 

Table 16:  F-15E (ACC) Explanatory Model 

Summary of Fit           
R2 0.82653 

   
  

Adjusted R2 0.80918 
   

  
Root Mean Square Error 0.01708 

   
  

Mean of Response 0.67059 
   

  
Observations (or Sum Wgts) 34         
Analysis of Variance           
Source DF Sum of Squares Mean Square F Ratio   
Model 3 0.04173 0.01391 47.647   
Error 30 0.00875 0.00029 Prob > F   
C. Total 33 0.05049   <.0001   
Parameter Estimates           
Term Estimate Std Error t Ratio Prob>|t| VIF 
Intercept 0.31488 0.08637 3.65 0.0010   
1QLagAARate 0.38525 0.12231 3.15 0.0037 2.555 
CANNhrs/TAI -0.00105 0.00022 -4.73 <.0001 2.228 
1,3,5_SkillLvl/TAI 0.01015 0.00454 2.23 0.0333 1.274 

  

Using the same process as before, we test the validity of our model by including 

the final nine periods of independent variable data and running the model in JMP®.  Table 

17 and Figure 8 provide the results of this analysis. 
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Table 17:  F-15E (ACC) Sensitivity Analysis 

FY-Q 
Lower 95% 
Confidence 

Observed AA 
Rate 

Predicted AA 
Rate 

Upper 95% 
Confidence 

Absolute 
Percent Error 

2006-Q4 0.6689 0.6740 0.7050 0.7412 4.61% 
2007-Q1 0.6735 0.6788 0.7141 0.7547 5.20% 
2007-Q2 0.6742 0.7108 0.7128 0.7514 0.28% 
2007-Q3 0.6870 0.6899 0.7248 0.7625 5.05% 
2007-Q4 0.6792 0.6632* 0.7184 0.7575 8.32% 
2008-Q1 0.6679 0.5930* 0.7085 0.7490 19.47% 
2008-Q2 0.6310 0.6737 0.6801 0.7292 0.95% 
2008-Q3 0.6741 0.6918 0.7141 0.7541 3.22% 
2008-Q4 0.6797 0.6324* 0.7181 0.7564 13.55% 
*Observations fall outside prediction interval                                                            MAPE = 6.74% 

  

Our model for F-15Es in ACC performs nearly as well as our first model.  Again, 

six out of nine (66.7%) observations fall within the prediction interval; however, the 

MAPE is slightly larger at 6.74%.  Furthermore, the range of our prediction intervals is 

smaller than the first model with an average of 0.08 (i.e., 8% in terms of the AA rates).   

 

Figure 8:  F-15E (ACC) Sensitivity Analysis 

Figure 8 shows a sharp decrease in the AA rate during the first quarter of 2008 

that our model did not predict.  In our model’s defense, this observation may be 
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considered somewhat of an outlier.  After mechanical failure resulted in the crash of an 

Air National Guard F-15C on November 2, 2007, the Air Force grounded all F-15 models 

until an investigation was conducted.  Later, on November 15, 2007, the Air Force began 

lifting the restriction for F-15Es after they concluded that the E-model was not 

susceptible to the same failure.  Nonetheless, F-15Es were still grounded for at least 13 

days which resulted in a low AA rate for the first quarter of 2008 (Wicke, 2007).  Finally, 

we must consider that the independent variable data used to validate the model fell 

outside the range of data used to construct the model six times for the cannibalization 

hours per TAI variable and once for the total number of 1-, 3-, and 5-level maintainers 

per TAI variable. 

      B-1 by ACC by Quarter 

 Our third model is for B-1 aircraft in ACC.  Table 18 provides the summary 

statistics for this model.  We use the three regressors from the first two models, in 

addition to the dependent variable lagged one period as independent variables for our B-1 

model.  Due to first order autocorrelation as evidenced by a Durban-Watson statistic of 

0.75 (significant at the 0.01 level), we included the lagged dependent variable.  

Additionally, the model’s adjusted R2 decreases from 0.76778 to 0.61946 without the 

lagged dependent variable included in the model.  Interestingly, the coefficient for the 

total number of 1-, 3-, and 5-level maintainers per TAI is negative in this equation where 

it was positive in the model for F-15Es.  We suspect that as the total number of lower 

skilled maintainers reaches a tipping point, they begin to adversely affect AA rates, 

especially if the total number of highly skilled maintainers does not increase at the same 
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rate.  In this situation, the total number of maintainers may be constant, but the proportion 

of low-skill maintainers will be increasing.   

 As we did with the first two models, we verified that the assumptions of 

normality, constant variance, and independence were met, in addition to checking for 

influential data points.  Here again, all assumptions were fulfilled. 

Table 18:  B-1 (ACC) Explanatory Model 

Summary of Fit           
R2 0.79593 

   
  

Adjusted R2 0.76778 
   

  
Root Mean Square Error 0.03423 

   
  

Mean of Response 0.50145 
   

  
Observations (or Sum Wgts) 34 

   
  

Analysis of Variance           
Source DF Sum of Squares Mean Square F Ratio   
Model 4 0.13255 0.03313 28.278   
Error 29 0.03398 0.00117 Prob > F   
C. Total 33 0.16654 

 
<.0001   

Parameter Estimates           
Term Estimate Std Error t Ratio Prob>|t| VIF 
Intercept 0.54769 0.14720 3.72 0.0008   
FlyHrs/TAI 0.00177 0.00067 2.61 0.0141 3.672 
CANNhrs/TAI -0.00139 0.00043 -3.23 0.0031 3.705 
1,3,5_SkillLvl/TAI -0.01053 0.00378 -2.78 0.0094 5.148 
1QLagAARate 0.61311 0.13618 4.50 0.0001 2.579 

 

 Once again, we test the validity of our model by including the final nine periods 

of independent variable data and running the model in JMP®.  Table 19 and Figure 9 

provide the results of this analysis. 
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Table 19:  B-1 (ACC) Sensitivity Analysis 

FY-Q 
Lower 95% 
Confidence 

Observed AA 
Rate 

Predicted AA 
Rate 

Upper 95% 
Confidence 

Absolute 
Percent Error 

2006-Q4 0.5419 0.5267* 0.6217 0.7014 18.02% 
2007-Q1 0.5316 0.5265* 0.6246 0.7177 18.64% 
2007-Q2 0.5404 0.5202* 0.6414 0.7424 23.29% 
2007-Q3 0.5339 0.5120* 0.6338 0.7337 23.78% 
2007-Q4 0.4975 0.5194 0.5790 0.6605 11.49% 
2008-Q1 0.5459 0.5003* 0.6526 0.7593 30.45% 
2008-Q2 0.5241 0.4302* 0.6264 0.7287 45.62% 
2008-Q3 0.4723 0.3644* 0.5835 0.6947 60.14% 
2008-Q4 0.4205 0.3373* 0.5426 0.6647 60.89% 
*Observations fall outside prediction interval                                                          MAPE = 32.48% 

 

 Immediately we find that only one out of nine observations fell within the 

prediction interval generated by our model.  The failure of our model is magnified when 

we consider that the average range of our prediction intervals was nearly 0.20 (i.e., 20% 

in terms of the predicted AA rates).  Lastly, our model produced a MAPE of 32.48%. 

 

Figure 9:  B-1 (ACC) Sensitivity Analysis 
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Figure 9 plainly shows that B-1s experienced a steady and dramatic decline in AA 

rates during the time period used to test our model, but we were unable to find a 

definitive reason as to why this trend occurred.  According to Air Force officials, the 

decline in AA rates is simply a sign of deterioration on individual components, not an 

indication of a specific problem (Rolfsen, 2008).  Additionally, the data used for our 

variables to validate the model fell within the original range of data in every instance 

with the exception of the data used for cannibalization hours per TAI, which used four 

observations below the original range of data.  This suggests that something related to B-

1 AA rates fundamentally changed during the final nine periods; however, we were 

unable to capture this change with the variables for which we had data.    

      KC-135 by AETC by Quarter 

 The last model we will discuss is for KC-135s in Air Education and Training 

Command (AETC).  As shown in Table 20, this model is the first for which we are able 

to use total EEIC 644 costs (lagged one period) as an independent variable.  We also use 

average aircraft age and the lagged dependent variable as regressors in this model. Again, 

we must include the lagged dependent variable because without it we see first order 

autocorrelation given by a Durban-Watson statistic of 0.82 (significant at the 0.01 level).  

Furthermore, the adjusted R2 drops from 0.70286 to 0.51723 without the AA rate lagged 

one period included in the model. 

Lastly, we verified that the assumptions of the random error term were satisfied, 

in addition to checking for influential data points.  Like the first three models, all 

assumptions were met. 
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Table 20:  KC-135 (AETC) Explanatory Model 

Summary of Fit           
R2 0.72987 

   
  

Adjusted R2 0.70286 
   

  
Root Mean Square Error 0.04218 

   
  

Mean of Response 0.73629 
   

  
Observations (or Sum Wgts) 34 

   
  

Analysis of Variance           
Source DF Sum of Squares Mean Square F Ratio   
Model 3 0.14427 0.04809 27.0198   
Error 30 0.05339 0.00178 Prob > F   
C. Total 33 0.19767 

 
<.0001   

Parameter Estimates           
Term Estimate Std Error t Ratio Prob>|t| VIF 
Intercept -0.15297 0.11357 -1.35 0.1881   
TotalEEIC644/TAI (Lag 1) 4.473E-07 2.272E-07 1.97 0.0583 1.022 
Avg Age 0.01082 0.00359 3.01 0.0052 1.584 
1QLagAARate 0.56119 0.12435 4.51 <.0001 1.575 

 

 Once more, we test the validity of our model by including the final nine periods of 

independent variable data and running the model in JMP®.  Table 21 and Figure 10 

provide the results of this analysis. 

Table 21:  KC-135 (AETC) Sensitivity Analysis 

FY-Q 
Lower 95% 
Confidence 

Observed AA 
Rate 

Predicted AA 
Rate 

Upper 95% 
Confidence 

Absolute 
Percent Error 

2006-Q4 0.7718 0.8492 0.8643 0.9569 1.78% 
2007-Q1 0.7770 0.7876 0.8702 0.9633 10.49% 
2007-Q2 0.7163 0.7464 0.8097 0.9032 8.48% 
2007-Q3 0.7033 0.7576 0.7977 0.8921 5.30% 
2007-Q4 0.7239 0.7715 0.8186 0.9132 6.10% 
2008-Q1 0.7301 0.8416 0.8251 0.9200 1.97% 
2008-Q2 0.7517 0.7724 0.8494 0.9471 9.97% 
2008-Q3 0.7174 0.7834 0.8167 0.9160 4.25% 
2008-Q4 0.7427 0.7310* 0.8408 0.9389 15.01% 
*Observation falls outside prediction interval                                                            MAPE = 7.04% 

 

 Although eight out of nine observations fall within the prediction interval, we can 

attribute some of this success to the fact that our model produced prediction intervals 
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with an average range of 0.19.  Such a large range when forecasting AA rates make this 

model’s usefulness questionable.  Finally, the MAPE for this model is 7.04%. 

 

Figure 10:  KC-135 (AETC) Sensitivity Analysis 

 Summary of Remaining Models 

 Table 22 summarizes the remaining models to include the adjusted R2 values, 

variable coefficients, and failed assumptions that we were unable to avoid.  In cases 

where we collected data on MDS that operate in more than one MAJCOM (e.g., A-10, F-

15E), we attempted to develop models that would be useful in predicting AA rates for the 

entire fleet of aircraft across each MAJCOM.  However, due to the apparent differences 

in predictive variables, we were unable to produce useful models for an MDS across all 

of its MAJCOMs.  It goes without saying, therefore, that we were unable to develop 

useful models to represent more than one MDS. 
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Table 22:  Summary of Models Created for Remaining MDS and MAJCOMs 
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A-10 PACAF 0.55399 34 0.39325 - - - -0.06561 -
0.04166 
(note 2) none

A-10 ACC 0.52320 34 0.66465 0.00117 - - - - - none
A-10 USAFE 0.40542 34 0.38250 - - - 0.05395 - - none

B-2 ACC 0.45791 35 - 0.00145 - - 0.13274 - - none

B-52 ACC 0.30829 34 0.45696 -0.00074 - - - - - none

F-15C/D ACC 0.65512 35 - 0.00189 0.01215 - - - - none

F-15C/D AETC 0.41891 34 0.45637 - - 1.0203E-07 - - -
A      

(note 3)
F-15C/D PACAF - - - - - - - - - -
F-15C/D USAFE - - - - - - - - - -

F-15E USAFE - - - - - - - - - -

F-16C/D ACC 0.68421 34 0.49512 - - - -0.04230 0.00843 - none

F-16C/D PACAF 0.63977 33 0.80798 - - - - -
-0.02696       
(note 4)

D       
(note 5)

F-16C/D AETC 0.41748 35 - - - - - 0.01518 -
A      

(note 6)
F-16C/D USAFE - - - - - - - - - -

KC-135 PACAF 0.49527 34 0.41306 0.00179 0.01975 - -0.09711 - - none
KC-135 USAFE - - - - - - - - - -

T-38 AETC 0.63190 34 0.64955 - 0.00371 - - - -
D       

(note 7)
T-38 ACC - - - - - - - - - -

Failed Assumptions:  (A) Normality; (B) Constant Variance; (C) Independence; (D) Influential Data Points                                                           
Notes:  1.) This variable represents the ratio of 1-, 3-, and 5-level maintainers to 7-, 9-, and 0-level maintainers.  
2.) A dummy variable to represent the 3rd Quarter of each fiscal year demonstrated predictive ability.  3.) The 
model failed the Shapiro-Wilk test for normality with a p-value of 0.0429.  4.) A dummy variable to represent the 
4th Quarter of each fiscal year demonstrated predictive ability.  5.) An influential data point was removed from 
the model because it significantly changed p-values.  6.) The model failed the Shapiro-Wilk test for normality 
with a p-value of 0.0332.  7.) An influential data point was allowed to remain in the model because the model 
was not changed when it was removed.        
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Further Analysis 

 Given our inability to develop regression models that show a definitive 

relationship between O&M costs and AA rates using our preferred strategy, we explore 

two more techniques. 

 During our review of the data, we notice that there is a high level of O&M costs 

recorded in EEIC 644 in the fourth quarter of each year for almost every MDS and 

MAJCOM (when compared to the previous quarters of the same fiscal year).  An 

example of this trend is shown in Figure 11 for the A-10 in ACC.  This occurrence is not 

surprising since units often have to spend their remaining funds at a higher rate at the end 

of a fiscal year.  Accordingly, this phenomenon should make it possible for us to test our 

hypothesis that increased spending leads to higher AA rates.  In order to test our theory, 

we use dummy variables to represent each quarter of the fiscal year in our regression 

model.  If there is a statistically significant difference between one of the quarters and the 

other three, we will see this in the form of a low p-value and a significant independent 

variable in our model.  We repeat this process several times in order to allow each quarter 

to serve as the baseline and include various combinations of the dummy variables 

representing each quarter in our model.  However, multiple attempts using this technique 

for every MDS and MAJCOM failed to show any significant difference from one quarter 

to the next. 
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Figure 11:  A-10 (ACC) EEIC 644 Costs by FY Quarter 

 For our next attempt at modeling AA rates using O&M costs, we take a different 

approach and use two of the variables representing non-availability as the dependent 

variable in our regression models.  First, we use the NMCS rate as the dependent variable 

in order to see if we can model the percentage of aircraft that are not mission capable for 

supply reasons.  Second, we use the NMCM rate as the dependent variable and attempt to 

model the percentage of aircraft that are not mission capable for maintenance reasons.  If 

we are able to produce predictive models that explain either NMCS or NMCM, we will 

be able to extract results that are nearly as useful as modeling AA rates directly.  

However, using these metrics as dependent variables does not produce better models. 

 

Chapter Summary 

  In Chapter IV, we explained the challenges presented by our data and the 

techniques we used to overcome these difficulties.  Next, we detailed the results of our 
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four best explanatory models and summarized the remaining models.  Finally, we 

explored two other techniques for examining our data, but with only marginal success. 

 In the next chapter, we use our findings to address our research questions.  Then, 

we discuss policy implications and the strengths and limitations of our study as well as 

opportunities for further research. 
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V:  Conclusions 

 

 In this chapter, we provide answers to our research questions based on the results 

of our study.  Next, we discuss potential policy implications.  Finally, we highlight the 

strengths and limitations of our study while suggesting areas for further research. 

 

Research Questions 

      1.  What variables are significant predictors of AA rates?  

 Of the 16 models we developed, we find that the dependent variable lagged one 

period is a significant predictor in 13 of our models.  Admittedly, this variable was 

included primarily to help mitigate the negative effects of autocorrelation in the residuals, 

and its explanatory contribution is of limited usefulness to decision makers.  By 

definition, we must have the current period’s AA rate in order to forecast the next 

period’s AA rate.  This requirement makes it very difficult for the models to be useful 

beyond one period into the future. 

 Next, we find that the flying hours per TAI variable is a predictive independent 

variable in seven of our models.  For all but one, the coefficient is positive which 

suggests that flying aircraft more often increases the AA rate.  The coefficient is only 

negative for the B-52 by ACC by quarter model.   

 Finally, our results show that the variable representing the ratio of 1-, 3-, and 5-

level maintainers to 7-, 9-, and 0-level maintainers is predictive in five of our models; 

however, the coefficients are mixed.  Three models show negative coefficients, which 

imply that larger numbers of low skilled maintainers decrease the effectiveness of the 



64 
 

maintenance being performed, resulting in lower AA rates.  The other two models result 

in positive coefficients, which imply the opposite effect.  Intuitively, this makes less 

sense.  We hypothesize that where positive coefficients are found, this variable is 

reflecting some other effect such as larger numbers of maintainers in general. 

      2.  Are AA rates influenced by changes in O&M spending?   

 From the analysis we performed, we are unable to show that AA rates are 

significantly influenced by changes in the amount of O&M spending.  Using total EEIC 

644 costs as our variable to represent O&M spending, we find that it is predictive in only 

2 of our 16 models (12.5%).  Both the KC-135 by AETC by quarter model and the F-

15C/D by AETC by quarter model found total EEIC 644 costs to be useful in predicting 

AA rates. 

3.  Do the AA rates of some weapon systems respond to changes in O&M costs 

more than others? 

  Our models indicated that AA rates of only the KC-135 in AETC and the F-

15C/D in AETC responded to changes in O&M spending.  Given our limited findings, we 

are unable to determine if the AA rates of some weapon systems respond to changes in 

O&M spending more than others.     

4.  Can a single model be developed to represent multiple MDS? 

 Despite repeated attempts, we were unable to develop a model that would 

represent multiple MDS or multiple MAJCOMs for a single MDS.  The models we 

created are specific to a particular MDS and MAJCOM. 

5.  Can the models produced by this research be used as an effective decision tool 

for the Centralized Asset Management (CAM) office? 
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 Given our lack of findings with respect to O&M costs and AA, we do not believe 

that the CAM office would find our models useful for allocating resources.  With more 

research, we hope that models will be developed that shed light on the relationship 

between O&M costs and AA rates. 

 

Policy Implications 

 As we discussed in Chapter II, CAM is significantly changing the way Air Force 

maintenance organizations acquire and pay for parts and supplies.  Instead of purchasing 

items at the base level, CAM now centrally manages the process for all active duty units.  

Although we previously focused on the many positive attributes of the new process, we 

must consider the potential negative consequences of centralization.  Before CAM was 

implemented, base level maintenance organizations were incentivized to be fiscally 

responsible.  They were constrained by their base level budget, which encouraged them 

to be cost effective and repair parts which could be redeemed for credits to pay for other 

items.  Now that funds are centrally managed, the Air Force must ensure that base level 

maintenance organizations continue to operate responsibly.  If base level organizations no 

longer feel constrained by their local budgets, they may begin to operate in a less cost 

effective manner resulting in higher overall costs to the Air Force.  

 

Strengths, Limitations, and Further Research 

 Although our research failed to draw a definitive link between O&M costs and 

AA rates, the data we collected and the variables we used in our study were reliable.  Our 

data was extracted directly from official Air Force databases and we used extreme care 



66 
 

when compiling our database.  Furthermore, we carefully analyzed our variables and 

incorporated them in our models in a fashion that would not result in disingenuous 

findings. 

We chose total costs recorded in EEIC 644 to represent O&M costs because we 

were able to show a clear link between the money spent and the aircraft type supported.  

In hindsight, this may have been a weakness in our analysis.  The CAM office manages a 

large portfolio of funds for the Air Force.  Figure 12 shows the funding posture for 

FY2010, which totals $12,363.1 million.  Budgeted at $2,147.8 million, EEIC 644 

accounts for nearly half of the flying hour program; however, we can plainly see that the 

majority of O&M costs managed by CAM are not represented by our variable.  We 

suggest that further research be done to include Depot Purchased Equipment 

Maintenance (EEICs 540, 541, 542, 543, 544, 545, 546, 548, and 549), Sustaining 

Engineering (EEIC 583), Technical Orders (EEIC 594), and Flying Hour Program costs 

(EEICs 605, 609, 61952, 69302, and 699 in addition to EEIC 644).   

 

Figure 12:  CAM FY2010 Funding Posture (in millions, BY10$) 
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 We selected our range of data to include FY1998 – 2008 because we were able to 

ensure consistent accounting of EEIC 644 costs during that timeframe.  Given several 

more years of post-CAM data (FY2008 and beyond), we feel that this study may produce 

entirely different results.  As we discussed in Chapter II, the resource allocation process 

prior to CAM was not designed to manage weapon systems from a performance-based 

perspective.  Now that the Air Force is operating with CAM and a philosophy of 

“performance-based logistics,” we hypothesize that a study done in the future would 

yield more useful and interesting results. 
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Appendix A:  Summary of Results for All Models 

 

Summary of Regression Coefficients and Adjusted R2 Values 
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A-10 PACAF 0.55399 34 0.39325 - - - - - -0.06561 -
0.04166 
(note 2) none

A-10 ACC 0.52320 34 0.66465 0.00117 - - - - - - - none
A-10 USAFE 0.40542 34 0.38250 - - - - - 0.05395 - - none

B-1 ACC 0.76779 34 0.61311 0.00177 - - -0.00139 -0.0105 - - - none

B-2 ACC 0.45791 35 - 0.00145 - - - - 0.13274 - - none

B-52 ACC 0.30829 34 0.45696 -0.00074 - - - - - - - none

F-15C/D ACC 0.65512 35 - 0.00189 0.01215 - - - - - - none

F-15C/D AETC 0.41891 34 0.45637 - - 1.0203E-07 - - - - -
A      

(note 3)
F-15C/D PACAF - - - - - - - - - - - -
F-15C/D USAFE - - - - - - - - - - - -

F-15E ACC 0.80918 34 0.38525 - - - -0.00105 0.01015 - - - none
F-15E USAFE - - - - - - - - - - - -

F-16C/D ACC 0.68421 34 0.49512 - - - - - -0.04230 0.00843 - none

F-16C/D PACAF 0.63977 33 0.80798 - - - - - - -
-0.02696       
(note 4)

D       
(note 5)

F-16C/D AETC 0.41748 35 - - - - - - - 0.01518 -
A     

(note 6)
F-16C/D USAFE - - - - - - - - - - - -

KC-135 AMC 0.86945 34 0.67384 0.000612 - - - - - - - none
KC-135 AETC 0.70286 34 0.56119 - 0.01082 4.4731E-07 - - - - - none
KC-135 PACAF 0.49527 34 0.41306 0.00179 0.01975 - - - -0.09711 - - none
KC-135 USAFE - - - - - - - - - - - -

T-38 AETC 0.63190 34 0.64955 - 0.00371 - - - - - -
D       

(note 7)
T-38 ACC - - - - - - - - - - - -

Failed Assumptions:  (A) Normality; (B) Constant Variance; (C) Independence; (D) Influential Data Points                                                           
Notes:  1.) This variable represents the ratio of 1-, 3-, and 5-level maintainers to 7-, 9-, and 0-level maintainers.  2.) A dummy 
variable to represent the 3rd Quarter of each fiscal year demonstrated predictive ability.  3.) The model failed the Shapiro-Wilk 
test for normality with a p-value of 0.0429.  4.) A dummy variable to represent the 4th Quarter of each fiscal year demonstrated 
predictive ability.  5.) An influential data point was removed from the model because it significantly changed p-values.  6.) The 
model failed the Shapiro-Wilk test for normality with a p-value of 0.0332.  7.) An influential data point was allowed to remain in 
the model because the model was not changed when it was removed.       
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Appendix B:  Sample of OLS Regression Diagnostic Tests 

 

KC-135 by AMC by Quarter Model 

First, we show a histogram of studentized residuals followed by the Shapiro-Wilk 

Test for normality.  The null hypothesis is that the residuals come from a normal 

distribution; small p-values reject the null hypothesis.  Alpha is 0.05 for all tests. 

 
Shapiro-Wilk Test 

W Prob<W 
0.9768 0.6704 

 

Next, we show the residual by predicted plot and the Breusch-Pagan test for 

constant variance of the residuals.  The null hypothesis is that the residuals exhibit 

constant variance; small p-values reject the null hypothesis. 

 
Breusch-Pagan Test 
p-value 0.678 
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 Third, we show the residual by row plot and the Durbin-Watson test for 

autocorrelation.    The null hypothesis is that the residuals are not serially correlated; 

small p-values reject the null hypothesis. 

 
Durbin-Watson Test 

Durbin-
Watson 

Number of 
Obs. AutoCorrelation Prob<DW 

1.6044 34 0.1747 0.0704 
 

 Last, we show the Cook’s Distance plot for influential data points.  We use a 

value of 0.5 as our cutoff for points that are influential and require additional inspection. 
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Appendix C:  Range of Independent Variable Data Used to Construct Models 

 

 KC-135 by AMC by Quarter Model 

Variable Min Max 
1QLagAARate 0.4637 0.7091 
FlyHrs/TAI 67.57 184.86 

 

F-15E by ACC by Quarter Model 

Variable Min Max 
1QLagAARate 0.5854 0.7238 
CANNhrs/TAI 23.35 101.21 
1,3,5_SkillLvl/TAI 14.45 16.68 

 

B-1 by ACC by Quarter 

Variable Min Max 
1QLagAARate 0.3797 0.6205 
CANNhrs/TAI 46.94 141.59 
1,3,5_SkillLvl/TAI 29.27 41.36 
FlyHrs/TAI 52.89 106.99 

 

KC-135 by AETC by Quarter 

Variable Min Max 
1QLagAARate 0.5877 0.8476 
TotalEEIC644/TAI (Lag 1) 44,920 188,551 
Avg Age 35.22 43.67 
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